검색

북큐브서점

마이페이지

로그아웃
  • 북캐시

    0원

  • 적립금

    0원

  • 쿠폰/상품권

    0장

  • 무료이용권

    0장

자동완성 기능이 꺼져 있습니다.

자동완성 끄기

네이버 인증이 완료되었습니다.

이미 북큐브 회원인 경우북큐브 ID로 로그인하시면, SNS계정이 자동으로 연결됩니다.

SNS 계정으로 신규 가입하기SNS계정으로 로그인 시 해당 SNS 계정으로 북큐브에 자동 가입되며 간편하게 로그인이 가능합니다.

비밀번호 찾기

북큐브 고객센터 : 1588-1925

아이디 찾기

북큐브 고객센터 : 1588-1925

아이디 조회 결과

비밀번호 조회 결과

으로
비밀번호를 발송했습니다.

파이썬으로 배우는 포트폴리오

금융공학/퀀트 투자의 기초부터 투자 모델, 머신 러닝까지!

도서 이미지 - 파이썬으로 배우는 포트폴리오

곽승주

길벗 출판|2021.03.26

0.0(0명)

서평(0)

시리즈 가격정보
전자책 정가 18,200원
구매 18,200원+3% 적립
출간정보 2021.03.26|EPUB|25.27MB
소득공제 여부 가능 (대여는 제외)

10년소장 안내

10년소장은 장기대여 상품으로 구매 상품과는 달리 다양한 프로모션 및 폭넓은 할인 혜택 제공이 가능합니다.

프로모션이 없는 경우 구매 상품과 가격이 동일하지만 프로모션이 진행되게 되면 큰 폭의 할인 및 적립이 제공됩니다.

close

지원 단말기 : IOS 11.0 이상, Android 4.1 이상, PC Window 7 OS 이상 지원듣기(TTS) 지원(모바일에서만 이용 가능)

책 소개 이미지

책소개

포트폴리오, 재무 기초, 파이썬 프로그래밍 기술까지 실제 재무 데이터로 구현하는 이론과 실전의 최적 조합!
  
이 책은 주식 투자에서 위험을 줄이고 투자 수익을 극대화하기 위한 일환으로 여러 종목에 분산 투자하는 방법인 포트폴리오에 초점을 맞추고 있다. 재무 기초, 포트폴리오 이론, 투자 모델을 수학과 그림, 파이썬 코드를 사용해 명확히 이해시키고자 했다. 파이썬의 기초는 물론 NumPy, Matplotlib, Pandas의 핵심 내용을 살펴보고, 실제 코드로 구현할 때는 주석으로 한줄한줄 자세히 코드를 설명해 이해를 높였다. 또한, 실제 주식시장 데이터를 사용하는 방법, Yahoo_fin 패키지를 사용해 재무 데이터를 가져오는 방법도 함께 소개한다. 

목차

[파이썬으로 배우는 포트폴리오]

1장 파이썬과 재무 기초 지식
__1.1 파이썬 시작하기
____1.1.1 파이썬 도구의 선택
____1.1.2 구글 코랩
____1.1.3 구글 코랩 시작하기
____1.1.4 파이썬의 여섯 가지 핵심 사항
__1.2 현금흐름, 이자율과 시간 가치
__1.3 NPV와 IRR
____1.3.1 NPV
____1.3.2 IRR
__1.4 수익률 대 수익률
____1.4.1 수익률과 할인율의 개념
____1.4.2 기간 수익률의 평균, 산술평균과 기하평균
____1.4.3 지배원리
__1.5 자주 사용하는 통계량: 기댓값, 분산, 공분산, 상관계수
____1.5.1 평균과 기댓값
____1.5.2 이동평균
____1.5.3 가중(산술)평균
____1.5.4 분산과 표준편차
____1.5.5 정규분포에서 표준편차와 평균
____1.5.6 자유도
____1.5.7 공분산과 상관계수
 
2장 투자와 자산배분
__2.1 자산배분과 포트폴리오
__2.2 포트폴리오 성과의 결정 요인들
__2.3 포트폴리오 성과 측정 삼총사
____2.3.1 샤프지수
____2.3.2 젠센알파지수
____2.3.3 트레이너지수
____2.3.4 정보비율
____2.3.5 최대 낙폭
 
3장 평균-분산 포트폴리오 이론
__3.1 포트폴리오의 기대수익률과 위험
____3.1.1 두 개 주식으로 구성된 포트폴리오
____3.1.2 n개 주식으로 만든 포트폴리오
__3.2 최소분산포트폴리오
__3.3 체계적 위험과 비체계적 위험
__3.4 무위험자산과 최적 자산배분
____3.4.1 효율적 포트폴리오
____3.4.2 기대효용과 무차별곡선
____3.4.3 최적 포트폴리오의 선택
____3.4.4 무위험자산+위험자산
____3.4.5 무위험자산+위험자산+효율적 투자선(자본배분선)
____3.4.6 최적 포트폴리오 선택
 
4장 자본자산가격결정모델
__4.1 기본 가정
____4.1.1 동일한 기대와 시장포트폴리오, 그리고 자본시장선
____4.1.2 포트폴리오 베타
__4.2 증권시장선과 자본시장선
____4.2.1 증권시장선과 자본시장선
____4.2.2 위험프리미엄
__4.3 포트폴리오 최적화
____4.3.1 최적화 패키지 scipy.optimize 알아보기
____4.3.2 간단한 최적화 알아보기
____4.3.3 최적화 알고리즘 SLSQP
____4.3.4 포트폴리오 최적화(최소분산포트폴리오 및 샤프비율)
__4.4 현실에 응용하기
 
5장 블랙-리터만 모델
__5.1 피셔 블랙과 블랙-리터만 모델
__5.2 간단히 알아보는 베이지안 확률
__5.3 역최적화로 구하는 균형기대수익률
____5.3.1 균형기대수익률(Π)
____5.3.2 위험회피계수(λ)
____5.3.3 자산의 공분산 행렬(Σ)
____5.3.4 자산시가총액 비중(W mkt )
__5.4 투자자 전망
__5.5 블랙-리터만 공식
__5.6 위험조정상수(τ)
__5.7 균형기대수익률과 투자자 전망 결합
__5.8 세 가지 자산을 가정한 예시
__5.9 블랙-리터만 모델 최적화
__5.10 현업에서의 블랙-리터만 모델
 
6장 파마-프렌치 3요인 모델
__6.1 효율적 시장 가설과 유진 파마
__6.2 베타는 죽었다
__6.3 파마-프렌치 3요인 모델
__6.4 프렌치 교수가 제공하는 요인 데이터
__6.5 파이썬을 이용한 요인 데이터 구하기와 회귀분석
____6.5.1 요인 데이터 구하기
____6.5.2 펀드 수익률과 요인 데이터 회귀분석
 
7장 금융산업과 머신 러닝
__7.1 머신 러닝 시작하기
__7.2 머신 러닝 맛보기, 선형 회귀
____7.2.1 비용함수와 경사하강법
____7.2.2 K-최근접 이웃 알고리즘
__7.3 K-최근접 이웃 알고리즘을 이용한 회귀
____7.3.1 라이브러리 임포트
____7.3.2 주가지수 데이터 가져오기
____7.3.3 예측변수 설정
____7.3.4 목표변수 설정
____7.3.5 데이터셋 분할
____7.3.6 KNN 모델 설정
____7.3.7 모델을 바탕으로 전략 실행
____7.3.8 샤프비율 계산
__7.4 로지스틱 회귀
____7.4.1 라이브러리 임포트
____7.4.2 데이터 가져오기
____7.4.3 예측변수/독립변수 설정
____7.4.4 목표변수/종속변수 설정
____7.4.5 데이터셋 분할
____7.4.6 로지스틱 회귀 모델의 설정 및 훈련
____7.4.7 클래스 확률 예측
____7.4.8 모델 평가
____7.4.9 매매 전략
 
8장 Yahoo_fin 패키지를 사용해 재무 데이터 가져오기
__8.1 설치 및 업그레이드
__8.2 stock_info 모듈
____8.2.1 패키지 임포트
____8.2.2 get_analysts_info(ticker)
____8.2.3 get_balance_sheet(ticker)
____8.2.4 get_cash_flow(ticker)
____8.2.5 get_data( )
____8.2.6 get_day_gainers( )
____8.2.7 get_day_losers( )
____8.2.8 get_day_most_active( )
____8.2.9 get_holders(ticker)
____8.2.10 get_live_price(ticker)
____8.2.11 get_quote_table(ticker, dict_result = True)
____8.2.12 get_top_crypto( )
____8.2.13 get_stats(ticker)
____8.2.14 get_stats_valuation(ticker)
____8.2.15 종목 티커 관련 함수
__8.3 재무 정보 가져오기(Yahoo_fin 패키지)
____8.3.1 패키지 임포트
____8.3.2 재무비율 구하기: 주가수익률 비율
____8.3.3 한 번에 여러 종목의 재무비율 구하기
____8.3.4 여러 종목의 기타 통계 구하기
__8.4 재무제표 다루기
____8.4.1 재무상태표 다루기
____8.4.2 손익계산서 다루기
____8.4.3 현금흐름표
 
부록 파이썬 라이브러리 삼총사
__A.1 수학 및 과학 연산, NumPy와 SciPy
____A.1.1 배열과 행렬 만들기
____A.1.2 배열과 행렬의 속성
____A.1.3 연산
____A.1.4 인덱싱/슬라이싱
____A.1.5 난수 만들기
__A.2 미술 담당, Matplotlib
____A.2.1 차트 도해
____A.2.2 라인 차트
____A.2.3 분산형 차트
____A.2.4 히스토그램
__A.3 데이터 담당, Pandas
____A.3.1 데이터프레임
____A.3.2 데이터프레임 만들기: DataFrame
____A.3.3 데이터프레임 합치기: concat과 merge
____A.3.4 인덱스 새로 만들기: reset_index
____A.3.5 데이터프레임 컬럼 삭제: drop
____A.3.6 컬럼을 행으로 모으기: melt
____A.3.7 정렬하기: sort_values
____A.3.8 쿼리하기: query
____A.3.9 데이터프레임 컬럼명 바꾸기: rename
____A.3.10 중복된 데이터 지우기: drop_duplicates
____A.3.11 데이터프레임 앞부분, 뒷부분 살짝 보기: head, tail
 
참고문헌

저자소개

한양대학교 경제학 석사 학위를 받았다. 은행과 자산운용사의 리스크, 컴플라이언스, 헤지펀드 부서에서 리스크 및 펀드성과 리포팅, 주식 및 선물운용 및 계량분석, ELS 평가 및 백테스팅, 백오피스 업무자동화 등을 위한 업무를 맡았고, 관련 소프트웨어를 개발하였다. 현재는 금융 관련 소프트웨어 개발에 집중하고 있다. 선물 알고리즘 트레이딩 서비스를 개발하는 중이며, 개인 홈페이지는 calabico.wordpress.com이다.

서평(0)

별점으로 평가해주세요.

서평쓰기

스포일러가 포함되어 있습니다.

0.0

(0명)

ebook 이용안내

  • 구매 후 배송이 필요 없이 다운로드를 통해 이용 가능한 전자책 상품입니다.
  • 전자책 1회 구매로 PC, 스마트폰, 태블릿 PC에서 이용하실 수 있습니다.
    (도서 특성에 따라 이용 가능한 기기의 제한이 있을 수 있습니다.)
  • 책파일 내 판권정보 정가와 북큐브 사이트 정가 표시가 다를 수 있으며, 실제 정가는 사이트에 표시된 정가를 기준으로 합니다.
  • 적립금 지급은 적립금 및 북큐브 상품권으로 결제한 금액을 뺀 나머지가 적립금으로 지급됩니다.
    (적립금 유효기간은 마이페이지>북캐시/적립금/상품권>적립금 적립내역에서 확인 가능합니다.)
  • 저작권 보호를 위해 인쇄/출력 기능은 지원하지 않습니다.
  • 구매하신 전자책은 “마이페이지 > 구매목록” 또는 “북큐브 내서재 프로그램 > 구매목록”에서 다운로드할 수 있습니다.
  • 스마트폰, 태블릿PC의 경우 북큐브 어플리케이션을 설치하여 이용할 수 있습니다. (모바일 페이지 바로가기)
  • PC에서는 PC용 내서재 프로그램을 통해 도서를 이용하실 수 있습니다.
  • ID 계정 당 총 5대의 기기에서 횟수 제한 없이 이용하실 수 있습니다.
TOP