검색

북큐브서점

마이페이지

로그아웃
  • 북캐시

    0원

  • 적립금

    0원

  • 쿠폰/상품권

    0장

  • 무료이용권

    0장

자동완성 기능이 꺼져 있습니다.

자동완성 끄기

네이버 인증이 완료되었습니다.

이미 북큐브 회원인 경우북큐브 ID로 로그인하시면, SNS계정이 자동으로 연결됩니다.

SNS 계정으로 신규 가입하기SNS계정으로 로그인 시 해당 SNS 계정으로 북큐브에 자동 가입되며 간편하게 로그인이 가능합니다.

비밀번호 찾기

북큐브 고객센터 : 1588-1925

아이디 찾기

북큐브 고객센터 : 1588-1925

아이디 조회 결과

비밀번호 조회 결과

으로
비밀번호를 발송했습니다.

친절한 딥러닝 수학

인공 신경망 이해를 위한 기초 수학

도서 이미지 - 친절한 딥러닝 수학

다테이시 겐고|김형민

한빛미디어 출판|2021.03.03

0.0(0명)

서평(0)

시리즈 가격정보
전자책 정가 22,400원
구매 22,400원+3% 적립
출간정보 2021.03.03|PDF|13.43MB
소득공제 여부 가능 (대여는 제외)

10년소장 안내

10년소장은 장기대여 상품으로 구매 상품과는 달리 다양한 프로모션 및 폭넓은 할인 혜택 제공이 가능합니다.

프로모션이 없는 경우 구매 상품과 가격이 동일하지만 프로모션이 진행되게 되면 큰 폭의 할인 및 적립이 제공됩니다.

close

지원 단말기 : IOS 11.0 이상, Android 4.1 이상, PC Window 7 OS 이상 지원 듣기, 스크랩 (형광펜, 메모), 본문 검색 불가

책소개

고등학교 수학으로 이해하는 인공 신경망

수학 기초는 약하지만 일단 개발부터 하고 보는 그대에게


수학을 어려워하는 마음을 깊이 공감하고 가능한 한 이해하기 쉽게 풀어냈다. 다양한 그림과 수식으로 신경망의 개념과 원리부터 경사하강법, 오차역전파법까지 설명하며 등장인물의 대화 속에서 자연스럽게 익힐 수 있도록 배려했다. 차근차근 쌓은 이론을 바탕으로 신경망을 구현해 이미지 크기를 판정해보고 손글씨도 식별해볼 수 있다. 수학이 약해 딥러닝이 낯설게 느껴졌다면, 딥러닝 이해에 필요한 수학 기초를 탄탄히 다지고 싶다면 이 책이 아주 좋은 안내자가 되어줄 것이다.


각 장의 개요



1장 신경망을 시작하자

신경망 개념을 알아보고 머신러닝 알고리즘과 어떤 차이가 있는지, 무엇을 할 수 있는지 살펴봅니다.



2장 순전파를 배우자

신경망을 구성하는 단순한 알고리즘인 퍼셉트론 안에서 계산이 어떻게 진행되는지 설명합니다.



3장 역전파를 배우자

신경망에서 적절한 가중치와 편향을 어떻게 계산해서 구하는지 설명합니다.



4장 합성곱 신경망을 배우자

합성곱 신경망을 이용한 이미지 처리 방법을 공부합니다.



5장 신경망을 구현하자

2, 3, 4장에서 배운 신경망 계산 방법을 파이썬으로 구현합니다. 이미지 크기를 판정해보고 합성곱 신경망을 이용해 손글씨 인식을 구현해봅니다.





주요 내용

신경망 개념과 구조
신경망이 문제를 해결하는 원리
확률, 미분, 선형대수, 함수, 벡터
퍼셉트론으로 이미지 판별하기
신경망의 가중치와 편향
최적화 문제와 목적 함수, 교차 엔트로피
순전파, 역전파, 오차역전파법, 경사하강법
합성곱 필터, 특징맵, ReLU, 풀링

코드로만 구현하는 딥러닝은 가라!

신경망 이해를 위한 친절한 기초 수학



딥러닝과 수학은 떼어놓고 생각할 수 없습니다. 딥러닝은 인공 신경망이라는 오래된 수학 모델과 통계 기법을 기반으로 합니다. 최근에는 신경망과 관련된 프레임워크, 라이브러리, 데이터셋, 문서 등이 풍부해 원하기만 하면 간단히 경험해볼 수 있습니다. 복잡한 부분은 잘 감춰져 있어 신경망 안에서 실제로 어떤 일이 일어나는지 몰라도 간단하게 구현이 가능하지만 그 아래에서 어떠한 일이 일어나는지 알면 더 좋을 것입니다. 기초를 안다면 응용할 수 있고 나아가 활용법을 쉽게 떠올릴 수 있기 때문입니다.



“수학 때문에 딥러닝이 어렵다.”

“딥러닝 구현은 할 수 있지만 수학 원리를 모르겠다.”



수학을 어려워하는 마음을 충분히 공감하고 가능한 한 이해하기 쉽게 설명했습니다. 신경망의 개념, 원리부터 경사하강법, 오차역전파법까지 등장인물의 대화 속에서 자연스럽게 익힐 수 있도록 배려했습니다. 차근차근 쌓은 이론을 바탕으로 신경망을 구현해 이미지 크기를 판정해보고 손글씨도 식별해보세요. 수학이 약해 딥러닝이 낯설게 느껴졌다면, 딥러닝 이해에 필요한 수학 기초를 탄탄히 다지고 싶다면 이 책이 아주 좋은 안내자가 되어줄 것입니다.

목차

[친절한 딥러닝 수학]

CHAPTER 1 신경망을 시작하자

1.1 신경망에 대한 흥미

1.2 신경망의 위치

1.3 신경망에 대해

1.4 신경망으로 할 수 있는 것

1.5 수학과 프로그래밍

COLUMN 신경망의 역사



CHAPTER 2 순전파를 배우자

2.1 신경망의 시작은 퍼셉트론

2.2 퍼셉트론

2.3 퍼셉트론과 편향

2.4 퍼셉트론으로 이미지의 긴 변 판정하기

2.5 퍼셉트론으로 정사각형 이미지 판정하기

2.6 퍼셉트론의 단점

2.7 다층 퍼셉트론

2.8 신경망으로 정사각형 이미지 판정하기

2.9 신경망의 가중치

2.10 활성화 함수

2.11 신경망의 실체

2.12 순전파

2.13 신경망의 일반화

COLUMN 활성화 함수란?



CHAPTER 3 역전파를 배우자

3.1 신경망의 가중치와 편향

3.2 인간의 한계

3.3 오차

3.4 목적 함수

3.5 경사하강법

3.6 작은 아이디어 델타

3.7 델타 계산

3.8 백프로퍼게이션

COLUMN 기울기 소실이란?



CHAPTER 4 합성곱 신경망을 배우자

4.1 이미지 처리에 강한 합성곱 신경망

4.2 합성곱 필터

4.3 특징맵

4.4 활성화 함수

4.5 풀링

4.6 합성곱층

4.7 합성곱층의 순전파

4.8 전결합층의 순전파

4.9 역전파

COLUMN 교차 엔트로피란?



CHAPTER 5 신경망을 구현하자

5.1 파이썬으로 구현하자

5.2 가로세로비 판정 신경망

5.3 손글씨 숫자 이미지 식별 합성곱 신경망

COLUMN 뒷이야기



APPENDIX A 수학 기초

A.1 시그마

A.2 미분

A.3 편미분

A.4 합성 함수

A.5 벡터와 행렬

A.6 지수와 로그



APPENDIX B 파이썬과 넘파이 기초

B.1 파이썬 환경 설정

B.2 파이썬 기초

B.3 넘파이 기초

저자소개

다테이시 겐고

사가대학교 졸업 후 몇 개의 개발 회사를 거친 뒤 2014년 LINE Fukuoka에 입사하여 데이터 분석 및 머신러닝을 전문으로 하는 조직을 신설하고 추천, 텍스트 분류 등 머신러닝을 사용한 제품을 담당했다. 2019년 스마트뉴스 주식회사에 입사하여 현재 머신러닝 엔지니어로 근무하고 있다.

역자
김형민

동국대학교에서 일본어 교육학을 전공했고 프리랜서 일본어 통/번역가로 활동했다. 이후 떠올린 아이디어를 구체화할 수 있는 프로그래밍에 매력을 느껴 프로그래머가 되기로 결심했고 지금은 일본에서 웹 개발을 하고 있다. 번역서로는 『프로그래밍 언어도감』, 『다양한 그래프, 간단한 수학, R로 배우는 머신러닝』 등이 있다.

서평(0)

별점으로 평가해주세요.

서평쓰기

스포일러가 포함되어 있습니다.

0.0

(0명)

ebook 이용안내

  • 구매 후 배송이 필요 없이 다운로드를 통해 이용 가능한 전자책 상품입니다.
  • 전자책 1회 구매로 PC, 스마트폰, 태블릿 PC에서 이용하실 수 있습니다.
    (도서 특성에 따라 이용 가능한 기기의 제한이 있을 수 있습니다.)
  • 책파일 내 판권정보 정가와 북큐브 사이트 정가 표시가 다를 수 있으며, 실제 정가는 사이트에 표시된 정가를 기준으로 합니다.
  • 적립금 지급은 적립금 및 북큐브 상품권으로 결제한 금액을 뺀 나머지가 적립금으로 지급됩니다.
    (적립금 유효기간은 마이페이지>북캐시/적립금/상품권>적립금 적립내역에서 확인 가능합니다.)
  • 저작권 보호를 위해 인쇄/출력 기능은 지원하지 않습니다.
  • 구매하신 전자책은 “마이페이지 > 구매목록” 또는 “북큐브 내서재 프로그램 > 구매목록”에서 다운로드할 수 있습니다.
  • 스마트폰, 태블릿PC의 경우 북큐브 어플리케이션을 설치하여 이용할 수 있습니다. (모바일 페이지 바로가기)
  • PC에서는 PC용 내서재 프로그램을 통해 도서를 이용하실 수 있습니다.
  • ID 계정 당 총 5대의 기기에서 횟수 제한 없이 이용하실 수 있습니다.
TOP