검색

북큐브서점

마이페이지

로그아웃
  • 북캐시

    0원

  • 적립금

    0원

  • 쿠폰/상품권

    0장

  • 무료이용권

    0장

자동완성 기능이 꺼져 있습니다.

자동완성 끄기

네이버 인증이 완료되었습니다.

이미 북큐브 회원인 경우북큐브 ID로 로그인하시면, SNS계정이 자동으로 연결됩니다.

SNS 계정으로 신규 가입하기SNS계정으로 로그인 시 해당 SNS 계정으로 북큐브에 자동 가입되며 간편하게 로그인이 가능합니다.

비밀번호 찾기

북큐브 고객센터 : 1588-1925

아이디 찾기

북큐브 고객센터 : 1588-1925

아이디 조회 결과

비밀번호 조회 결과

으로
비밀번호를 발송했습니다.

머신러닝을 위한 실전 데이터셋

개인 정보를 보호하고 머신러닝 학습에 사용할 합성 데이터 만들기

도서 이미지 - 머신러닝을 위한 실전 데이터셋

칼리드 엘 에맘, 루시 모스케라, 리처드 홉트로프|심상진

한빛미디어 출판|2021.01.11

0.0(0명)

서평(0)

시리즈 가격정보
전자책 정가 14,400원
구매 14,400원+3% 적립
출간정보 2021.01.11|PDF|4.96MB

10년소장 안내

10년소장은 장기대여 상품으로 구매 상품과는 달리 다양한 프로모션 및 폭넓은 할인 혜택 제공이 가능합니다.

프로모션이 없는 경우 구매 상품과 가격이 동일하지만 프로모션이 진행되게 되면 큰 폭의 할인 및 적립이 제공됩니다.

close

지원 단말기 : IOS 10.0 이상, Android 4.1 이상, PC Window 7 OS 이상 지원 듣기, 스크랩 (형광펜, 메모), 본문 검색 불가

책소개

개인 정보 보호와 광범위한 데이터 사용의 균형을 이루다.



머신러닝 모델을 구축하고, 테스트를 진행하려면 크고 다양한 종류의 데이터가 필요하다. 그러나 대부분의 데이터셋은 개인 정보 문제로 사용이 제한적이라 광범위하게 사용할 수 없다. 이 책에서는 실제 데이터로 새로운 데이터를 만드는 실용적인 합성 데이터 기술을 소개한다. 합성 데이터는 이차 분석에 용이하여 데이터 연구, 고객 행동의 이해, 신제품 개발 등 다양한 목적으로 활용될 수 있다.



이 책은 실제 데이터를 합성해 다양한 산업에서 사용할 수 있는 방법을 제공하며, 개인 정보 문제를 해결하는 방법을 다룬다. 또한 실제 데이터셋에서 합성 데이터를 생성하기 위한 원칙과 단계를 배운다. 더 나아가 합성 데이터가 제품이나 솔루션 개발에 드는 시간을 어떻게 단축할 수 있는지를 학습한다.



다변량 정규 분포를 사용해 합성 데이터 생성하기
다양한 적합도 메트릭을 분포 적합하기
원본 데이터의 구조를 복제하기
관계가 복잡한 데이터를 모델링하기
데이터 효용성을 평가하는 방식과 측정 기준 정하기
실제 데이터를 분석해 합성 데이터를 복제하기
합성 데이터의 개인 정보와 신원 노출을 평가하기




출판사 리뷰



합성 데이터는 지난 몇 년간 주목을 받으며 사회적 관심이 급속도로 증가했는데, 이러한 현상은 다음과 같은 두 가지에 관심이 쏠리면서 촉발됐다. 첫째는 인공지능과 머신러닝(AIML) 모델을 양성하고 구축하는 데 따른 대량의 데이터 수요다. 둘째는 고품질의 합성 데이터를 생성하는 효과적인 방법을 입증한 최근의 작업이다. 이로 인해 합성 데이터가 특히 AIML 커뮤니티 내에서 어려운 문제를 일부 상당히 효과적으로 해결할 수 있음을 인식하게 됐다. 따라서 NVIDIA, IBM, 알파벳과 같은 회사들만이 아니라 미국 인구조사국 같은 정부 기관도 모델 구축, 애플리케이션 개발, 데이터 배포를 지원하기 위해 다양한 유형의 데이터 합성 방법론을 채택하기에 이르렀다.



1장 : 합성 데이터와 그 이점이 무엇인지 설명한다. 인공지능과 머신러닝(AIML) 프로젝트는 다양한 산업에서 사용되고 있으며, 광범위한 활용 사례 중 맛보기로 몇 가지를 발췌해 수록했다.



2장 : 데이터 합성의 목표를 설정하고 다른 방법들에 비해 비즈니스 우선순위에 적합한 시기를 결정하는 데 도움되는 의사결정 프레임워크를 제시한다.



3장 : 데이터 합성 프로세스의 첫 번째 단계인 분포 모델링을 다룬다. 비정형 데이터 분포를 머신러닝 모델에 적합하는 방법을 개략적으로 설명한다.



4장 : 합성 데이터에 사용할 수 있는 데이터 효용성 프레임워크를 설명한다. 데이터 합성기 최적화, 데이터 합성 접근법, 합성 데이터의 결과 파악 등을 살펴본다.



5장 : 기본 개념을 이용해 합성 데이터를 생성해본다. 몇 가지 기본적인 접근법으로 시작해서 뒤로 갈수록 복잡한 접근법으로 발전하며 입문자용 기술부터 고급 기술까지 다룬다.



6장 : 먼저 데이터 합성이 보호하려는 노출 유형을 정의한다. 미국과 유럽연합의 주요 프라이버시 규정이 합성 데이터를 어떻게 다루는지 검토하고, 프라이버시 보장 분석을 시작할 방법을 제시한다.



7장 : 합성 데이터셋과 합성 데이터 생성 기술을 전수해온 경험을 바탕으로 실제 데이터를 처리할 때 도움될 실용적인 고려사항을 제시한다. 도전적인 과업을 강조할 뿐만 아니라 과업을 해결할 방안도 제시한다.

목차

[머신러닝을 위한 실전 데이터셋]

CHAPTER 1 합성 데이터 생성 소개

1.1 합성 데이터 정의

1.2 합성 데이터의 이점

1.3 합성 데이터의 활용 사례

1.4 요약



CHAPTER 2 데이터 합성

2.1 합성 시기

2.2 식별화 가능성 스펙트럼

2.3 데이터 접근 활성화를 위한 PET 선택의 절충

2.4 데이터 합성 프로젝트

2.5 데이터 합성 파이프라인

2.6 합성 프로그램 관리

2.7 요약



CHAPTER 3 시작: 분포 적합

3.1 데이터 프레임

3.2 데이터 분포 유형

3.3 실제 데이터에 분포 적합시키기

3.4 분포로부터 합성 데이터 생성

3.5 요약



CHAPTER 4 합성 데이터의 효용성 평가

4.1 합성 데이터 효용성 프레임워크: 분석 복제

4.2 합성 데이터의 효용성 프레임워크: 효용성 메트릭

4.3 요약



CHAPTER 5 데이터 합성 방법

5.1 합성 데이터 생성 이론

5.2 실제 합성 데이터 생성

5.3 하이브리드 합성 데이터

5.4 머신러닝 방법

5.5 딥러닝 방법

5.6 시퀀스 합성

5.7 요약



CHAPTER 6 합성 데이터의 신원 식별

6.1 노출 유형

6.2 개인 정보 보호법이 합성 데이터의 생성과 사용에 미치는 영향

6.3 요약



CHAPTER 7 실제 데이터 합성

7.1 데이터 복잡성 관리

7.2 데이터 합성 구성

7.3 결론

저자소개

저자
칼리드 엘 에맘

Eastern Ontario Research Institute의 아동병원 선임 과학자이자 종합적인 전자 건강 정보연구소 소장으로 합성 데이터 생성 방법과 도구에 대한 응용 학술 연구를 수행하고 재식별 위험성을 측정한다. 또 오타와 대학교 의과대학 교수로 재직 중이다.

칼리드는 의료산업에서 인공지능과 머신러닝(Artificial Intelligence and Machine Learning, AIML)의 응용을 추진하기 위해 합성 데이터 개발에 주력하는 Replica Analytics의 공동 설립자다. 동시에 데이터 보호 기술을 개발하고 의료 서비스를 제공하며 신약 발명을 지원하는 분석 도구를 구축하는 기술 회사의 이사회에서 투자, 자문, 이사를 겸임하고 있다.

저자
루시 모스케라

캐나다 킹스턴에 있는 퀸즈 대학과 브리티시컬럼비아 대학에서 학업을 마쳤으며, 생물학과 수학을 전공했다. 킹스턴 종합병원의 임상 시험 및 관찰 연구에 데이터 관리 지원을 제공하고, 다양한 회사와 동형 암호화 및 비밀 공유 프로토콜을 기반으로 한 임상 시험 데이터 공유 방법을연구한 경력이 있다. 루시는 Replica Analytics의 수석 데이터 과학자로, 건강 데이터에 대한 자신의 주제 분야 전문 지식을 합성 데이터 생성, 해당 데이터의 혁신적인 평가 방법에 통합하고 회사의 분석 프로그램을 감독하는 일을 하고 있다.

저자
리처드 홉트로프

박사 과정에서 개발한 인공지능과 시계열 데이터 처리 기술을 기반으로 하는 기술 스타트업을 전문으로 한다. 초기 단계 개발 시의 제품 개념을 상용화하는 일, 위험과 투자 비용을 최소화해 구매할 수 있는 제품과 서비스의 개발에 주된 관심이 있다. 지난 30여 년간 예측 소프트웨어, 데이터 마이닝, 블루투스 라디오, ASIC 제작, 고정밀 스마트 워치 제조, 서비스로서의 추적 가능한 시간(Traceable Time as a Service)에서 스타트업 창업가로 활동했다.

역자
심상진

네이버 클로바의 Conversation팀에서 자연어 데이터 분석 및 모델러로 활동 중이다. 물리학을 전공했으며, 임베딩 소프트웨어 개발, 단백질 분자 모델링 연구 및 시스템 파이프라인 구축, 기상/지리 데이터 관련 시각화 및 관리 소프트웨어 방면에서 경력을 쌓았다.

현재는 데이터 분석을 평생의 업으로 생각하고 이 일에 매진하고 있다. 자연어 처리를 주 업무로 하며, 데이터 수집 방법과 레이블링의 효율적 처리 방법을 강구하는 중이다. 또 BERT보다 작으면서도 효율적인 구성을 가진 모델을 연구하며, 자연어를 기계어에 일대일로 대응시킬 방법을 모색하고 있다. 무엇보다 최근에 태어난 아이에 대해서도 애정 어린 연구를 게을리하지 않으려고 노력한다.

서평(0)

별점으로 평가해주세요.

서평쓰기

스포일러가 포함되어 있습니다.

0.0

(0명)

ebook 이용안내

  • 구매 후 배송이 필요 없이 다운로드를 통해 이용 가능한 전자책 상품입니다.
  • 전자책 1회 구매로 PC, 스마트폰, 태블릿 PC에서 이용하실 수 있습니다.
    (도서 특성에 따라 이용 가능한 기기의 제한이 있을 수 있습니다.)
  • 책파일 내 판권정보 정가와 북큐브 사이트 정가 표시가 다를 수 있으며, 실제 정가는 사이트에 표시된 정가를 기준으로 합니다.
  • 적립금 지급은 적립금 및 북큐브 상품권으로 결제한 금액을 뺀 나머지가 적립금으로 지급됩니다.
    (적립금 유효기간은 마이페이지>북캐시/적립금/상품권>적립금 적립내역에서 확인 가능합니다.)
  • 저작권 보호를 위해 인쇄/출력 기능은 지원하지 않습니다.
  • 구매하신 전자책은 “마이페이지 > 구매목록” 또는 “북큐브 내서재 프로그램 > 구매목록”에서 다운로드할 수 있습니다.
  • 스마트폰, 태블릿PC의 경우 북큐브 어플리케이션을 설치하여 이용할 수 있습니다. (모바일 페이지 바로가기)
  • PC에서는 PC용 내서재 프로그램을 통해 도서를 이용하실 수 있습니다.
  • ID 계정 당 총 5대의 기기에서 횟수 제한 없이 이용하실 수 있습니다.
TOP