검색

북큐브서점

마이페이지

로그아웃
  • 북캐시

    0원

  • 적립금

    0원

  • 쿠폰/상품권

    0장

  • 무료이용권

    0장

자동완성 기능이 꺼져 있습니다.

자동완성 끄기

네이버 인증이 완료되었습니다.

이미 북큐브 회원인 경우북큐브 ID로 로그인하시면, SNS계정이 자동으로 연결됩니다.

SNS 계정으로 신규 가입하기SNS계정으로 로그인 시 해당 SNS 계정으로 북큐브에 자동 가입되며 간편하게 로그인이 가능합니다.

비밀번호 찾기

북큐브 고객센터 : 1588-1925

아이디 찾기

북큐브 고객센터 : 1588-1925

아이디 조회 결과

비밀번호 조회 결과

으로
비밀번호를 발송했습니다.

R로 배우는 실무 데이터 과학

니나 줌멜, 존 마운트

제이펍|2020.03.27

0.0(0명)

서평(0)

시리즈 가격정보
전자책 정가 21,000원
구매 21,000원3% 적립
출간정보 2020.03.27|PDF|11.97MB

10년소장 안내

10년소장은 장기대여 상품으로 구매 상품과는 달리 다양한 프로모션 및 폭넓은 할인 혜택 제공이 가능합니다.

프로모션이 없는 경우 구매 상품과 가격이 동일하지만 프로모션이 진행되게 되면 큰 폭의 할인 및 적립이 제공됩니다.

close

지원 단말기 : IOS 9.0 이상, Android 4.1 이상, PC Window 7 OS 이상 지원

책소개

데이터 탐색에서 모델링, 결과 전달에 이르기까지
데이터 과학의 모든 프로세스를 담았다!

비즈니스 분석가와 개발자는 점점 더 중요한 비즈니스 데이터를 수집하고, 큐레이팅하고, 분석하고 보고한다. R 언어와 관련 도구들은 이런 과중한 업무를 학문적 이론이나 고급 수학을 적용하지 않는 일상적인 데이터 과학 작업으로 처리하는 손쉬운 방법을 제공한다.

이 책은 실무 비즈니스에 사용할 수 있는 R 프로그래밍 언어와 유용한 통계 기술 적용 방법을 보여준다. 마케팅, 비즈니스 인텔리전스 및 의사 결정 예를 사용하여 A/B 테스트 같은 설계 방법, 예측 모델 작성 방법 및 모든 수준의 잠재 고객에게 결과를 제시하는 방법 등을 제대로 보여준다.

이 책이 다루는 내용
*비즈니스 전문가를 위한 데이터 과학
*R 언어를 이용한 통계 분석
*기획에서 제품 인도까지의 프로젝트 라이프사이클
*즉시 응용 가능한 수많은 사례
*효과적인 데이터 프레젠테이션의 핵심

목차

[R로 배우는 실무 데이터 과학]

1. PART I 데이터 과학 소개

CHAPTER 1 데이터 과학 프로세스

1.1 데이터 과학 프로젝트에서의 역할

1.1.1 프로젝트에서의 역할

1.2 데이터 과학 프로젝트의 단계

1.2.1 목표 설정

1.2.2 데이터 수집과 관리

1.2.3 모델링

1.2.4 모델 평가와 비평

1.2.5 프레젠테이션과 문서화

1.2.6 모델 배포와 유지보수

1.3 기대치 설정

1.3.1 모델 성능 상하한선 결정

1.4 요약



CHAPTER 2 R 프로그램에 데이터 적재하기

2.1 파일에 있는 데이터 다루기

2.1.1 파일 또는 URL로부터 잘 구조화된 데이터 작업하기

2.1.2 덜 구조화된 데이터에 R 사용하기

2.2 관계형 데이터베이스를 이용하여 작업하기

2.2.1 실무 예제

2.2.2 R에 데이터베이스 데이터 입력하기

2.2.3 PUMS data로 작업하기

2.3 요약



CHAPTER 3 데이터 탐색하기

3.1 통계 요약치를 이용하여 문제 파악하기

3.1.1 데이터 요약을 통해 전형적인 데이터 문제 파악하기

3.2 그래프와 시각화를 통해 문제 제거하기

3.2.1 단일변수에서 시각적으로 분산 점검하기

3.2.2 두 변수의 관계를 시각적으로 확인하기

3.3 요약



CHAPTER 4 데이터 관리

4.1 데이터 정리하기

4.1.1 결측치 다루기

4.1.2 데이터 변환

4.2 모델링과 데이터 유효성 검증을 위한 샘플링

4.2.1 테스트와 트레이닝의 분할

4.2.2 샘플 그룹 열 만들기

4.2.3 레코드 그룹화

4.2.4 데이터 출처

4.3 요약



PART II 모델링 기법

CHAPTER 5 모델 선택과 평가

5.1 머신러닝 과제에 문제 매핑하기

5.1.1 분류 문제 해결하기

5.1.2 스코어링 문제 해결하기

5.1.3 예측 결과 없이 일하기

5.1.4 문제와 방법 매핑하기

5.2 모델 평가

5.2.1 분류 모델 평가하기

5.2.2 스코어링 모델 평가하기

5.2.3 확률 모델 평가하기

5.2.4 랭킹 모델 평가하기

5.2.5 클러스터 모델 평가하기

5.3 모델 검증하기

5.3.1 일반적인 모델 문제 확인하기

5.3.2 모델 건전성 정량화

5.3.3 모델 품질 보증

5.4 요약



CHAPTER 6 메모라이제이션

6.1 KDD와 KDD 컵 2009

6.1.1 KDD 컵 2009 데이터로 시작하기

6.2 단일변수 모델 구축하기

6.2.1 범주형 특성 사용하기

6.2.2 숫자형 특성 사용하기

6.2.3 교차 검증으로 과적합 정도 측정하기

6.3 다항변수를 이용하여 모델 구축하기

6.3.1 변수 선택

6.3.2 의사결정나무 사용하기

6.3.3 최근접 이웃 메서드 사용하기

6.3.4 나이브 베이즈 사용하기

6.4 요약



CHAPTER 7 선형 회귀와 로지스틱 회귀

7.1 선형 회귀 사용하기

7.1.1 선형 회귀 이해하기

7.1.2 선형 회귀 모델 만들기

7.1.3 예측하기

7.1.4 선형 회귀에서 관계 찾기와 조언 추출하기

7.1.5 모델 요약값 해석과 계수 품질 규정하기

7.1.6 선형 회귀에서 꼭 기억할 내용

7.2 로지스틱 회귀 사용하기

7.2.1 로지스틱 회귀 이해하기

7.2.2 로지스틱 회귀 모델 만들기

7.2.3 예측 모델 만들기

7.2.4 로지스틱 모델에서 관계 찾기와 조언 추출하기

7.2.5 모델 요약값 해석과 계수 품질 규정하기

7.2.6 로지스틱 회귀에서 꼭 기억할 내용

7.3 요약



CHAPTER 8 비지도 방법론

8.1 클러스터 분석

8.1.1 거리

8.1.2 데이터 준비하기

8.1.3 hclust()를 이용한 계층적 클러스터링

8.1.4 k-means 알고리즘

8.1.5 클러스터에 새로운 포인트 추가하기

8.1.6 클러스터링에서 꼭 기억할 내용

8.2 연관 규칙

8.2.1 연관 규칙 개요

8.2.2 예제

8.2.3 arules 패키지를 이용한 연관 규칙 마이닝

8.2.4 연관 규칙에서 꼭 기억할 내용

8.3 요약



CHAPTER 9 고급 탐색법

9.1 배깅과 랜덤 포레스트를 이용하여 훈련 분산 감소시키기

9.1.1 배깅을 이용하여 예측 성능 높이기

9.1.2 랜덤 포레스트를 이용하여 예측력 향상시키기

9.1.3 배깅과 랜덤 포레스트에서 꼭 기억할 내용

9.2 일반화 가법 모델로 비단조 관계 학습하기

9.2.1 GAM 이해하기

9.2.2 일차원 회귀 예제

9.2.3 비선형 관계 추출

9.2.4 실제 데이터로 GAM 사용하기

9.2.5 로지스틱 회귀에 GAM 사용하기

9.2.6 GAM에서 꼭 기억할 내용

9.3 데이터 분리를 증가시키기 위해 커널 메서드 사용하기

9.3.1 커널 함수 이해하기

9.3.2 문제에 명시적 커널 사용하기

9.3.3 커널에서 꼭 기억할 내용

9.4 서포트 벡터 머신으로 복잡한 결정 경계 모델링하기

9.4.1 서포트 벡터 머신 이해하기

9.4.2 인위적 예제 데이터에 SVM 적용하기

9.4.3 실데이터 기반에서 SVM 사용하기

9.4.4 서포트 벡터 머신에서 꼭 기억할 내용

9.5 요약



PART III 산출물 배포

CHAPTER 10 문서화와 배포

10.1 버즈 데이터셋

10.2 knitr을 사용하여 마일스톤 문서 만들기

10.2.1 knitr이란?

10.2.2 knitr 세부사항

10.2.3 knitr을 이용하여 버즈 데이터 문서화하기

10.3 실행 문서를 위한 주석과 버전 관리 사용하기

10.3.1 효율적인 주석 작성하기

10.3.2 레코드 히스토리를 위해 버전 컨트롤 사용하기

10.3.3 프로젝트 탐색을 위한 버전 컨트롤 사용하기

10.3.4 작업 공유를 위해 버전 관리 사용하기

10.4 모델 배포하기

10.4.1 R HTTP 서비스로 모델 배포하기

10.4.2 익스포트로 모델 배포하기

10.4.3 모델 배포에서 꼭 기억할 내용

10.5 요약



CHAPTER 11 효과적인 발표 자료 만들기

11.1 프로젝트 스폰서에게 결과 발표하기

11.1.1 프로젝트 목표 요약하기

11.1.2 프로젝트 결과 명시하기

11.1.3 세부사항 채우기

11.1.4 개선 사항과 향후 과제 토론하기

11.1.5 프로젝트 스폰서 프레젠테이션에서 꼭 기억할 내용

11.2 최종 사용자에게 프레젠테이션하기

11.2.1 프로젝트 목표 요약하기

11.2.2 모델이 사용자의 워크플로에 어떻게 적용되는지 보여주기

11.2.3 모델 사용법 보여주기

11.2.4 최종 사용자 프레젠테이션에서 꼭 기억할 내용

11.3 동료 데이터 과학자에게 작업 결과 프레젠테이션하기

11.3.1 문제 언급하기

11.3.2 관련 작업에 대해 의논하기

11.3.3 우리의 접근 방법에 대해 의논하기

11.3.4 향후 작업 의논하기

11.3.5 동료 프레젠테이션에서 꼭 기억할 내용

11.4 요약



APPENDIX A R과 기타 도구로 작업하기

A.1 도구 설치하기

A.1.1 R 설치하기

A.1.2 R 패키지 시스템

A.1.3 Git 설치하기

A.1.4 RStudio 설치하기

A.1.5 R 관련 자료

A.2 R 시작하기

A.2.1 R의 주요 기능

A.2.2 R의 기본 데이터 유형

A.2.3 HTTPS로 데이터 로딩하기

A.3 R로 데이터베이스 사용하기

A.3.1 H2 데이터베이스 엔진 획득하기

A.3.2 SQuirreL SQL 사용하기

A.3.3 SQL 스크루드라이버 설치하기

A.3.4 SQL 변환 작업 예제

A.3.5 SQL로 생각하는 법



APPENDIX B 중요한 통계적 개념

B.1 분산

B.1.1 정규분포

B.1.2 R의 확률분포 명명 규칙 요약

B.1.3 로그 정규분포

B.1.4 이항분포

B.1.5 분산 관련 기타 R 도구

B.2 통계 이론

B.2.1 통계 철학

B.2.2 A/B 테스트

B.2.3 검정력

B.2.4 특수 통계 테스트

B.3 데이터 통계 보기

B.3.1 표본추출 편향

B.3.2 누락된 변수 편향

뭐어

APPENDIX C 데이터 탐색을 위한 더 많은 도구와 아이디어

C.1 더 많은 도구

C.1.1 R 그 자체

C.1.2 다른 언어

C.1.3 빅데이터 도구

C.2 기타 아이디어

C.2.1 적응 학습

C.2.2 통계 학습

C.2.3 컴퓨터 과학 머신러닝

C.2.4 베이지안 방법론

C.2.5 통계학

C.2.6 부스팅

C.2.7 시계열

C.2.8 도메인 지식



찾아보기

저자소개

저 : 니나 줌멜 (Nina Zumel)
니나 줌멜은 독립적인 비영리 연구소 SRI International에서 과학자로 일했다. 또한, 가격 최적화 회사의 수석 과학자로 일했으며, 계약 연구 회사를 설립하기도 했었다. 현재는 Win-Vector LLC의 수석 컨설턴트로 일하고 있다.

저 : 존 마운트 (John Mount)
존 마운트는 생명 공학 분야의 컴퓨터 과학자이자 주식 거래 알고리즘 디자이너로 일했으며, Shopping.com의 연구 팀을 관리했다. 현재는 니나와 함께 Win-Vector LLC의 수석 컨설턴트로 일하고 있다.

역 : 임대경
SK C&C와 IBM에서 주로 응용 애플리케이션 아키텍트로 경험을 쌓았다. 현재는 쿠팡에서 추천시스템 개발 업무를 담당하고 있다. 커피와 차에 관심이 많고 주말에는 딸과 노느라 바쁘다. 최근에는 딥러닝과 이미지 처리 분야에 관심을 가지고 있다.

서평(0)

별점으로 평가해주세요.

서평쓰기

스포일러가 포함되어 있습니다.

0

(0명)

ebook 이용안내

  • 구매 후 배송이 필요 없이 다운로드를 통해 이용 가능한 전자책 상품입니다.
  • 전자책 1회 구매로 PC, 스마트폰, 태블릿 PC에서 이용하실 수 있습니다.
    (도서 특성에 따라 이용 가능한 기기의 제한이 있을 수 있습니다.)
  • 책파일 내 판권정보 정가와 북큐브 사이트 정가 표시가 다를 수 있으며, 실제 정가는 사이트에 표시된 정가를 기준으로 합니다.
  • 적립금 지급은 적립금 및 북큐브 상품권으로 결제한 금액을 뺀 나머지가 적립금으로 지급됩니다.
    (적립금 유효기간은 마이페이지>북캐시/적립금/상품권>적립금 적립내역에서 확인 가능합니다.)
  • 저작권 보호를 위해 인쇄/출력 기능은 지원하지 않습니다.
  • 구매하신 전자책은 “마이페이지 > 구매목록” 또는 “북큐브 내서재 프로그램 > 구매목록”에서 다운로드할 수 있습니다.
  • 스마트폰, 태블릿PC의 경우 북큐브 어플리케이션을 설치하여 이용할 수 있습니다. (모바일 페이지 바로가기)
  • PC에서는 PC용 내서재 프로그램을 통해 도서를 이용하실 수 있습니다.
  • ID 계정 당 총 5대의 기기에서 횟수 제한 없이 이용하실 수 있습니다.
TOP