검색

북큐브서점

마이페이지

로그아웃
  • 북캐시

    0원

  • 적립금

    0원

  • 쿠폰/상품권

    0장

  • 무료이용권

    0장

자동완성 기능이 꺼져 있습니다.

자동완성 끄기

네이버 인증이 완료되었습니다.

이미 북큐브 회원인 경우북큐브 ID로 로그인하시면, SNS계정이 자동으로 연결됩니다.

SNS 계정으로 신규 가입하기SNS계정으로 로그인 시 해당 SNS 계정으로 북큐브에 자동 가입되며 간편하게 로그인이 가능합니다.

비밀번호 찾기

북큐브 고객센터 : 1588-1925

아이디 찾기

북큐브 고객센터 : 1588-1925

아이디 조회 결과

비밀번호 조회 결과

으로
비밀번호를 발송했습니다.

그것이 R고 싶다

R스튜디오에서 클라우드까지 데이터 과학자가 꼭 알아야 할 R 패키지 활용

도서 이미지 - 그것이 R고 싶다

양중기

한빛미디어 출판|2018.12.03

0.0(0명)

서평(0)

시리즈 가격정보
전자책 정가 25,600원
구매 25,600원+3% 적립
출간정보 2018.12.03|PDF|24.12MB
소득공제 여부 가능 (대여는 제외)

10년소장 안내

10년소장은 장기대여 상품으로 구매 상품과는 달리 다양한 프로모션 및 폭넓은 할인 혜택 제공이 가능합니다.

프로모션이 없는 경우 구매 상품과 가격이 동일하지만 프로모션이 진행되게 되면 큰 폭의 할인 및 적립이 제공됩니다.

close

지원 단말기 : IOS 11.0 이상, Android 4.1 이상, PC Window 7 OS 이상 지원 듣기, 스크랩 (형광펜, 메모), 본문 검색 불가

책소개

데이터 분석에서 시각화까지 패키지로 배우는 실무형 R 입문서

데이터 분석가는 단순히 R 언어를 아는 것을 넘어 업계에서 표준처럼 쓰이는 각종 패키지에도 능통해야 한다. 다양한 기능을 GUI로 제공하는 R스튜디오 사용법을 익히는 것도 중요하고, 클라우드에 분석 환경을 구축하고 웹 앱을 만드는 법도 알아야 한다. 이 책은 실무에서 많이 사용하는 R스튜디오 기능과 각종 패키지 중심으로 R을 학습할 수 있게 쓰였다. 실무 친화적으로 데이터 분석과 시각화 기법을 소개하고, AWS 등 클라우드 환경과의 연동 방법도 설명한다.

목차

[그것이 R고 싶다]

PART 1 데이터 과학과 R 언어
CHAPTER 1 데이터 과학으로 가는 길
1.1 데이터 과학의 길
__1.1.1 데이터로 하는 일은?
__1.1.2 데이터와 관련된 직업은?
__1.1.3 데이터 과학자에게 필요한 역량은?
__1.1.4 데이터 과학자가 되려면?
1.2 데이터 과학 기술 트렌드
__1.2.1 데이터 분석 언어
__1.2.2 데이터 분석 기술
__1.2.3 데이터 시각화 기술

CHAPTER 2 데이터 월드 경험하기
2.1 R, MRO, R스튜디오 설치하기
__2.1.1 R 설치하기
__2.1.2 MRO 설치하기
__2.1.3 R스튜디오 설치하기
2.2 R스튜디오 살펴보기
__2.2.1 기본 레이아웃
__2.2.2 새 프로젝트 만들기
__2.2.3 프로젝트 저장
__2.2.4 R스튜디오와 R 연동하기


PART 2 R 기본 배우기
CHAPTER 3 데이터 형태와 구조
3.1 데이터 형태
__3.1.1 특수한 상태를 나타내는 상수
__3.1.2 논릿값(진릿값)
__3.1.3 범주형
__3.1.4 문자형
__3.1.5 숫자형
__3.1.6 데이터 타입 확인
3.2 데이터 구조
__3.2.1 벡터
__3.2.2 리스트
__3.2.3 배열과 행렬
__3.2.4 데이터 프레임
3.3 연산자
__3.3.1 할당 연산자
__3.3.2 산술 연산자
__3.3.3 관계 연산자
__3.3.4 논리 연산자
3.4 함수와 변수
__3.4.1 함수
__3.4.2 기술통계 함수
__3.4.3 전역변수, 지역변수, 매개변수
3.5 제어문(조건문)
__3.5.1 if문
__3.5.2 switch문
__3.5.3 for문
__3.5.4 while문

CHAPTER 4 데이터 핸들링
4.1 dplyr와 tidyr 치트시트
4.2 데이터 핸들링 기초
__4.2.1 tbl_df()
__4.2.2 glimpse()
__4.2.3 %% ( 파이프)
4.3 데이터 열/행 조작
__4.3.1 gather()
__4.3.2 spread()
__4.3.3 separate()
__4.3.4 unite()
4.4 필요한 행만 선택하기
__4.4.1 filter()
__4.4.2 slice()
4.5 필요한 열만 선택하기
__4.5.1 select()
4.6 데이터 조합하기(열 기준)
__4.6.1 bind_cols()
__4.6.2 left_join()
__4.6.3 right_join()
__4.6.4 inner_join()
__4.6.5 full_join()
4.7 데이터 조합하기(행 기준)
__4.7.1 bind_rows()
__4.7.2 intersect()
__4.7.3 setdiff()
__4.7.4 union()
4.8 파생 데이터 만들기
__4.8.1 mutate()
__4.8.2 transmute()


PART 3 데이터 분석하기
CHAPTER 5 데이터 가져오기
5.1 CSV, XLS, TXT: 공공데이터포털
__5.1.1 CSV 데이터
__5.1.2 엑셀 데이터
__5.1.3 TXT 데이터
5.2 XML과 JSON: 서울열린데이터광장
__5.2.1 XML 데이터
__5.2.2 JSON 데이터
5.3 데이터베이스
__5.3.1 MS SQL 서버
__5.3.2 MySQL
__5.3.3 dbplyr와 pool 패키지
5.4 R 내장 데이터셋
5.5 빅데이터(feather와 fst)

CHAPTER 6 통계분석 기초
6.1 통계분석 기법
__6.1.1 요약통계
__6.1.2 가설검정: 귀무가설, 대립가설, p 값
__6.1.3 평균과 표준편차
__6.1.4 빈도 분석
__6.1.5 분위수와 사분위수
6.2 정규분포와 정규성 검정
__6.2.1 표준정규분포 곡선
__6.2.2 샤피로-윌크 검정
6.3 데이터 검정
__6.3.1 카이제곱검정
__6.3.2 t 검정
__6.3.3 분산분석

CHAPTER 7 고급 데이터 분석 기법
7.1 상관분석
7.2 회귀분석
__7.2.1 다양한 회귀분석 방법
__7.2.2 다중회귀분석 실습
7.3 의사결정나무
__7.3.1 의사결정나무 개요
__7.3.2 의사결정나무 R 함수
__7.3.3 의사결정나무 실습
7.4 랜덤 포레스트

CHAPTER 8 데이터 시각화
8.1 ggplot2 패키지
__8.1.1 ggplot2 패키지 설치
__8.1.2 소품문 및 참고 자료
8.2 ggplot2 구성 요소와 문법 구조
__8.2.1 메타데이터 생성
__8.2.2 레이어 상속
__8.2.3 colour 매핑과 group 매핑
__8.2.4 기하 객체와 통계 객체
__8.2.5 기하 객체와 통계 객체의 결합
8.3 ggplot2 치트시트
__8.3.1 변수가 하나일 때
__8.3.2 변수가 두 개일 때
8.4 ggThemeAssist 패키지
__8.4.1 ggThemeAssist 패키지 설치
__8.4.2 Settings
__8.4.3 Panel & Background
__8.4.4 Axis
__8.4.5 Title and label
__8.4.6 Legend
__8.4.7 Subtitle and Caption
8.5 ggplot2와 ggThemeAssist 함께 활용하기


PART 4 클라우드를 이용한 데이터 분석
CHAPTER 9 클라우드 분석 환경 구성
9.1 아마존 웹 서비스
__9.1.1 아마존 웹 서비스 가입하기
__9.1.2 리눅스+R+R스튜디오 구성
__9.1.3 웹으로 R스튜디오 접속하기
__9.1.4 요금표
9.2 애저
__9.2.1 애저 가입하기
__9.2.2 리눅스+R+R스튜디오 구성
__9.2.3 웹으로 R스튜디오 접속하기
__9.2.4 요금표

CHAPTER 10 클라우드 분석 활용하기
10.1 AWS 클라우드로 분석하기
__10.1.1 인스턴스 구성
__10.1.2 R스튜디오 컴파일 설정 및 새 프로젝트
__10.1.3 HTML 컴파일 및 접속
__10.1.4 의사결정나무 R 마크다운 버전
10.2 R 마크다운으로 데이터 연동형 보고서 작성하기
__10.2.1 R 마크다운 치트시트
__10.2.2 R 마크다운 기초
__10.2.3 청크 옵션
__10.2.4 라벨
__10.2.5 기타 청크 옵션
10.3 shiny로 반응형 분석 앱 개발하기
__10.3.1 shiny 웹 앱 생성
__10.3.2 랜덤 포레스트 분석 앱
__10.3.3 의사결정나무 분석 앱
10.4 shiny와 플로틀리로 반응형 시각화 강화하기

저자소개

저자_ 양중기

데이터 과학 전문가. 9년간 R 언어를 다뤄왔으며, 20편 이상의 데이터 분석 논문을 발표했다. 의학 연구소에서 데이터 분석을 시작하여 기업, 대학, 연구, 기관 등 다양한 조직의 데이터 분석을 진행했다. 현재 게임 데이터 분석팀을 이끌어 빅데이터 처리 프로세스를 개발하며, 데이터에서 인사이트를 발굴하고 데이터 기반의 게임 환경에 긍정적인 변화를 일으키는 데이터 전문가로 활동하고 있다.

서평(0)

별점으로 평가해주세요.

서평쓰기

스포일러가 포함되어 있습니다.

0.0

(0명)

ebook 이용안내

  • 구매 후 배송이 필요 없이 다운로드를 통해 이용 가능한 전자책 상품입니다.
  • 전자책 1회 구매로 PC, 스마트폰, 태블릿 PC에서 이용하실 수 있습니다.
    (도서 특성에 따라 이용 가능한 기기의 제한이 있을 수 있습니다.)
  • 책파일 내 판권정보 정가와 북큐브 사이트 정가 표시가 다를 수 있으며, 실제 정가는 사이트에 표시된 정가를 기준으로 합니다.
  • 적립금 지급은 적립금 및 북큐브 상품권으로 결제한 금액을 뺀 나머지가 적립금으로 지급됩니다.
    (적립금 유효기간은 마이페이지>북캐시/적립금/상품권>적립금 적립내역에서 확인 가능합니다.)
  • 저작권 보호를 위해 인쇄/출력 기능은 지원하지 않습니다.
  • 구매하신 전자책은 “마이페이지 > 구매목록” 또는 “북큐브 내서재 프로그램 > 구매목록”에서 다운로드할 수 있습니다.
  • 스마트폰, 태블릿PC의 경우 북큐브 어플리케이션을 설치하여 이용할 수 있습니다. (모바일 페이지 바로가기)
  • PC에서는 PC용 내서재 프로그램을 통해 도서를 이용하실 수 있습니다.
  • ID 계정 당 총 5대의 기기에서 횟수 제한 없이 이용하실 수 있습니다.
TOP