검색

북큐브서점

마이페이지

로그아웃
  • 북캐시

    0원

  • 적립금

    0원

  • 쿠폰/상품권

    0장

  • 무료이용권

    0장

자동완성 기능이 꺼져 있습니다.

자동완성 끄기

네이버 인증이 완료되었습니다.

이미 북큐브 회원인 경우북큐브 ID로 로그인하시면, SNS계정이 자동으로 연결됩니다.

SNS 계정으로 신규 가입하기SNS계정으로 로그인 시 해당 SNS 계정으로 북큐브에 자동 가입되며 간편하게 로그인이 가능합니다.

비밀번호 찾기

북큐브 고객센터 : 1588-1925

아이디 찾기

북큐브 고객센터 : 1588-1925

아이디 조회 결과

비밀번호 조회 결과

으로
비밀번호를 발송했습니다.

강화학습 첫걸음

텐서플로로 살펴보는 Q 러닝, MDP, DQN, A3C 강화학습 알고리즘

도서 이미지 - 강화학습 첫걸음

아서 줄리아니 지음,송교석 옮김

한빛미디어 출판|2018.12.03

0.0(0명)

서평(0)

시리즈 가격정보
전자책 정가 14,400원
구매 14,400원+3% 적립
출간정보 2018.12.03|PDF|2.55MB
소득공제 여부 가능 (대여는 제외)

10년소장 안내

10년소장은 장기대여 상품으로 구매 상품과는 달리 다양한 프로모션 및 폭넓은 할인 혜택 제공이 가능합니다.

프로모션이 없는 경우 구매 상품과 가격이 동일하지만 프로모션이 진행되게 되면 큰 폭의 할인 및 적립이 제공됩니다.

close

지원 단말기 : IOS 11.0 이상, Android 4.1 이상, PC Window 7 OS 이상 지원 듣기, 스크랩 (형광펜, 메모), 본문 검색 불가

책소개

텐서플로 코드로 입문하는 강화학습의 세계

알파고의 기반인 강화학습은 게임 AI나 자율주행 등 업계 활용성이 높아 인공지능의 미래로 단연 주목받고 있다. 이 책은 복잡한 이론을 두루뭉술하게 설명하는 대신, 예제 코드를 직접 돌려보며 강화학습 알고리즘을 익히게 도와준다. 기본적인 텐서플로 사용법은 알지만 강화학습은 처음인 개발자를 대상으로, 주요 강화학습 알고리즘이 어떤 원리이며 어떻게 구현할 수 있는지 알려준다. 오픈AI 짐의 카트-폴, 얼어붙은 강 같은 고전 문제부터 〈둠〉 같은 3D 게임까지 이르기까지 흥미로운 예제를 통해 Q 러닝, MDP, DQN, A3C 등 주요 강화학습 알고리즘을 알차게 배울 수 있다.

목차

[강화학습 첫걸음]

PART I 주요 알고리즘 및 구현

CHAPTER 1 강화학습 소개

CHAPTER 2 밴딧 문제
2.1 정책 경사
2.2 멀티암드 밴딧의 구현

CHAPTER 3 콘텍스트 밴딧
3.1 콘텍스트 밴딧 구현

CHAPTER 4 마르코프 결정 과정
4.1 기본적인 정책 경사 에이전트 구현

CHAPTER 5 Q 러닝
5.1 테이블 환경에 대한 테이블식 접근법
5.2 신경망을 통한 Q 러닝

CHAPTER 6 딥 Q 네트워크
6.1 개선 1: 합성곱 계층
6.2 개선 2: 경험 리플레이
6.3 개선 3: 별도의 타깃 네트워크
6.4 DQN을 넘어서
6.5 더블 DQN
6.6 듀얼링 DQN
6.7 모든 것을 조합하기
6.8 개선된 딥 Q 네트워크 구현

CHAPTER 7 부분관찰성과 순환 신경망
7.1 부분관찰성 문제
7.2 제한되고 변화하는 세계 이해하기
7.3 순환 신경망
7.4 텐서플로 구현을 위한 변경점
7.5 제한된 그리드 세계
7.6 DRQN 구현

CHAPTER 8 비동기적 어드밴티지 액터-크리틱
8.1 A3C의 세 가지 A
8.2 A3C 구현
8.3 [둠] 게임 플레이하기

PART II 심화 주제

CHAPTER 9 에이전트의 생각과 액션 시각화
9.1 컨트롤 센터의 인터페이스
9.2 에이전트의 머릿속 들여다보기
9.3 강화학습 컨트롤 센터 이용

CHAPTER 10 환경 모델 활용하기
10.1 모델 기반의 강화학습 구현

CHAPTER 11 탐험을 위한 액션 선택 전략
11.1 탐험은 왜 하는 것인가요?
11.2 그리디 접근법
11.3 랜덤 접근법
11.4 엡실론-그리디 접근법
11.5 볼츠만 접근법
11.6 베이지언 접근법(드롭아웃)
11.7 각 전략의 성능 비교 및 구현
11.8 고급 기법

CHAPTER 12 정책 학습을 위한 정책 학습
12.1 메타 에이전트 만들기
12.2 메타 실험
12.3 마치며

저자소개

저자_ 아서 줄리아니

딥러닝 및 인지과학 연구자. 오리건 대학교에서 심리학 석사 학위를 취득하고 현재는 인지뇌과학 박사 과정을 밟고 있다. 강화학습, 공간인지, 비주얼 콘셉트 개발, 지각 행동 교차 등에 관심이 많다. 트위터 @awjuliani


역자_ 송교석

고려대학교졸업 후 카네기 멜런 대학교에서 컴퓨터과학 석사 학위를 받았다. LG전자, 동양시스템즈를 거쳐 안랩에서 10년간 근무했으며, 안랩에서 분사한 노리타운스튜디오의대표를 역임한 바 있다. 2017년 4월에 메디픽셀(Medipixel)을 설립하여 대표를 맡고 있으며, 인공지능을 이용해 의료 영상을 분석함으로써폐암을 조기 진단하는 프로젝트를 진행하고 있다. 옮긴 책으로 『신경망 첫걸음』, 『처음 배우는 인공지능』(이상 한빛미디어, 2017)이 있다.

서평(0)

별점으로 평가해주세요.

서평쓰기

스포일러가 포함되어 있습니다.

0.0

(0명)

ebook 이용안내

  • 구매 후 배송이 필요 없이 다운로드를 통해 이용 가능한 전자책 상품입니다.
  • 전자책 1회 구매로 PC, 스마트폰, 태블릿 PC에서 이용하실 수 있습니다.
    (도서 특성에 따라 이용 가능한 기기의 제한이 있을 수 있습니다.)
  • 책파일 내 판권정보 정가와 북큐브 사이트 정가 표시가 다를 수 있으며, 실제 정가는 사이트에 표시된 정가를 기준으로 합니다.
  • 적립금 지급은 적립금 및 북큐브 상품권으로 결제한 금액을 뺀 나머지가 적립금으로 지급됩니다.
    (적립금 유효기간은 마이페이지>북캐시/적립금/상품권>적립금 적립내역에서 확인 가능합니다.)
  • 저작권 보호를 위해 인쇄/출력 기능은 지원하지 않습니다.
  • 구매하신 전자책은 “마이페이지 > 구매목록” 또는 “북큐브 내서재 프로그램 > 구매목록”에서 다운로드할 수 있습니다.
  • 스마트폰, 태블릿PC의 경우 북큐브 어플리케이션을 설치하여 이용할 수 있습니다. (모바일 페이지 바로가기)
  • PC에서는 PC용 내서재 프로그램을 통해 도서를 이용하실 수 있습니다.
  • ID 계정 당 총 5대의 기기에서 횟수 제한 없이 이용하실 수 있습니다.
TOP